Doripenem European Surveillance: Antimicrobial Activity Against 6,480 Contemporary Pathogens (2004) TR FRITSCHE, HS SADER, RN JONES • JMI Laboratories, North Liberty, Iowa, USA

AMENDED ABSTRACT

Objective: To characterize the spectrum of activity and potency of doripenem (DOR) (formerly S-4661) and comparator agents against contemporary wild-type bacterial isolates from medical centers in Europe and the Middle East in 2004. DOR is a novel parenteral 1-β-methyl carbapenem in late-stage clinical development whose molecular structure confers stability to β-lactamases and resistance to renal dehydropeptidases. Methods: The collection included 6,480 non-duplicate, consecutive clinical isolates from patients in 24 medical centers in Europe (21), Turkey (2), and Israel (1) that were submitted to the DOR surveillance program (2004) for identification, confirmation, and susceptibility testing. MIC values for >30 antimicrobials were determined using NCCLS broth microdilution methods (2003). A tentative DOR susceptible break point of ≤ 4 mg/L (≤ 0.25 mg/L for *S. pneumoniae*) was used for comparative purposes; CLSI (2005) criteria were used for other tested agents.

Results: Antimicrobial activities of DOR and other carbapenems versus selected isolates.

	MIC ₉₀ mg/L (% susceptible)				
Organism (no. tested)	DOR	Imipenem			
S. aureus oxacillin-S (1,231)	0.06 (100)	0.12 (100)	≤0.12 (100)		
CoNS oxacillin-S (528)	0.06 (99.1)	0.12 (100)	≤0.12 (100)		
S. pneumoniae (603)	0.5 (82.4)	0.5 (81.8)	0.25 (82.9)*		
H. influenzae (459)	0.25 (100)	0.06 (100)	1 (100)		
Enterobacter spp. (215)	0.25 (98.1)	0.12 (98.1)	1 (97.2)		
P. aeruginosa (491)	16 (82.7)	>8 (76.4)	>8 (72.7)		
Acinetobacter spp. (149)	16 (54.4)	>8 (49.0)	>8 (51.0)		

*Results for 70 isolates only.

DOR consistently displayed activity against staphylococci and streptococci (MIC₉₀, 0.06 and 0.5 mg/L) most similar to that of imipenem, and against *E. coli* and *Klebsiella* spp. (MIC₉₀, 0.06 and 0.5 mg/L, respectively, including 8.3% and 26.9% of strains that met ESBL screening criteria) most similar to that of meropenem. *Enterobacter* spp. isolates, including 35.8% that were ceftazidimeresistant (indicative of AmpC production), were also highly susceptible to DOR and other carbapenems (0.5 to 1.4% resistant) DOR also provided slightly enhanced coverage against *P. aeruginosa* (82.7% susceptible) and *Acinetobacter* spp. (54.4% susceptible) compared to other carbapenems. Carbapenem resistance among these latter strains is, however, a particularly worrisome development **Conclusions:** DOR is a new carbapenem with a competitive profile that incorporates both potent Gram-negative and Gram-positive activity, with enhanced activity against the commonly occurring non-fermentative gram-negative bacilli. Carbapenems are assuming a greater therapeutic role in many nations as multidrug resistance (including emergence of Ambler class A, C, and D β-lactamases) spreads, necessitating their accelerated development.

INTRODUCTION

As an antimicrobial class, carbapenems are innately stable to most β-lactamases of Ambler classes A, C, and D and are widely used for serious infections involving resistant Enterobacteriaceae (including extended-spectrum β-lactamase [ESBL]-producing and AmpC overproducing isolates), anaerobes, *Pseudomonas aeruginosa*, and Acinetobacter spp. Only recently have β -lactamases been detected that are variably able to hydrolyze carbapenem agents, including and most importantly-enzymes in Ambler class B (metalloβ-lactamase [MβL]; IMP, VIM, SPM, GIM, SIM series) but also class A (SME, NMC-A, IMI-1, KPC) and class D (OXA series). While often detected as part of clonal outbreaks, the situation has been gradually changing with the established presence of M_βLs in areas such as Japan, South America, and Italy.

Doripenem (formerly S-4661), a parenteral carbapenem in latestage clinical trials, confers β-lactamase stability and resistance to inactivation by renal dehydropeptidases. Earlier in vitro studies on this new carbapenem have shown the compound to have a spectrum and potency versus Gram-positive cocci most similar to imipenem, and a Gram-negative activity most like meropenem (e.g., 2- to 4-fold greater than imipenem). While previous studies have focused on limited populations of targeted species, particularly resistant subsets or from specific anatomic sites of infection, current surveillance data assessing particular regional resistance characteristics are needed as the compound nears approval for clinical use. In this report, we summarize the results of an international surveillance testing program comparing the activity of doripenem and currently marketed carbapenems with other antimicrobial agents against contemporary (2004) clinical isolates from medical centers in Europe and the Middle East. A total of 6,480 bacterial strains were tested by reference Clinical and Laboratory Standards Institute (CLSI; formerly NCCLS) methods with susceptibilities to comparator agents interpreted by CLSI break point criteria.

MATERIALS AND METHODS

Bacterial Strain Collection. A total of 6,480 non-duplicate consecutive clinical isolates were submitted from 24 medical centers located in Europe (21 sites), Turkey (2 sites) and Israel (1 site) as part of an international surveillance program. Isolates originated from patients with documented bloodstream, respiratory, skin and soft tissue, and urinary tract infections. The distribution of species and groups is shown in Table 1

Table 1. Distribution of species and groups.					
Species	Strains				
Enterobacteriaceae	1,813				
Pseudomonas aeruginosa	491				
Acinetobacter spp.	149				
Stenotrophomonas maltophilia	61				
Aeromonas spp.	19				
Haemophilus influenzae	459				
Staphylococcus aureus (25.1% oxacillin-resistant)	1,643				
Coagulase-negative staphylococci (79.9% oxacillin-resistant)	528				
Streptococci (3 groups)	830				
Enterococcus spp.	389				
Others	98				

<u>Susceptibility Test Methods</u>. All strains were tested by the reference broth microdilution method in Mueller-Hinton broth (with 5% lysed horse blood added for testing of streptococci and Haemophilus Test Medium for testing of Hemophilus influenzae) against a variety of antimicrobial agents representing the most common classes and examples of drugs used in the empiric or directed treatment of the indicated pathogen. Interpretation of minimum inhibitory concentration (MIC) results was in accordance with CLSI criteria. Enterobacteriaceae with elevated MICs (≥ 2 mg/L) for ceftazidime and/or ceftriaxone and/or aztreonam were considered as ESBL-producing phenotypes. Quality control strains utilized included Escherichia coli ATCC 25922 and 35218, P. aeruginosa ATCC 27853, H. influenzae ATCC 49247, Staphylococcus aureus ATCC 29213, Streptococcus pneumoniae ATCC 49619, and *Enterococcus faecalis* ATCC 29212.

RESULTS

Table 2. Antimicrobial activity of dorigenem and five other broad-spectrum β -lactams tested against contemporary wild-type strains of Enterobacteriaceae.

Organism (no. tested) Antimicrobial agent 56xherichia coli Doripenem 0.03 0.03 SO.008-0.25 100.0 0.0 (916) Entrapenem ≤0.008 0.016 ≤0.008-125 100.0 0.0 Meropenem ≤0.02 ≤0.12 ≤0.02 ≤0.12 100.0 0.0 Meropenem ≤0.06 ≤0.06 ≤0.06-0.5 100.0 0.0 Meropenem 0.03 0.06 0.016-16 99.7 0.3 (321) Entapenem ≤0.008 0.012 ≤0.008-316 99.4 0.0 Meropenem ≤0.02 ≤0.06 ≤0.06 50.94 99.4 0.0 Meropenem ≤0.02 ≤0.02 ≤0.02-30 99.4 0.0 Meropenem ≤0.06 ≤0.06 ≤0.06 30.7 100.0 0.0 (107) Entapenem ≤0.02 ≤0.02 ≤0.02-36 3.7 100.0 0.0 (107) Entapenem ≤0.02 ≤0.02 ≤0.06-2 0.00 0.0 <				MIC (mg/l	% hu ootogonu			
Exchanchia coli Doripenem 0.03 0.03 ≤0.008 0.016 ≤0.008-0.25 100.0 ⁺ 0.0 (916) Entapenem ≤0.008 0.016 ≤0.008-12 100.0 0.0 Meropenem ≤0.02 ≤0.12 ≤0.12 50.12 100.0 0.0 Cefepine ≤0.02 ≤0.06 ≤0.06 50.06 2.9 P Meropenem ≤0.02 0.05 ≤0.08->16 99.4 0.0 (221) Entapenem ≤0.006 ≤0.06 50.06-3 99.4 0.0 Cefepine ≤0.12 >16 ≤0.12->16 86.3 12.1 Piperacillin/ Lazobactam 4 >64 ≤0.5->64 79.8 15.9 Proteus mirabilis Doripenem 0.12 0.06 50.06-3 0.00 100 100 (107) Entapenem ≤0.008 0.016 ≤0.008-3 100.0 0.0 (107) Entapenem ≤0.008 0.012 ≤0.00-0.0 0.0	Organism (no. tostod)	Antimioropial agont	50%		MIC (mg/L)		% by category ^a	
(916) Ertapenem ≤0.008 0.016 ≤0.008-1 100.0 0.0 Meropenem ≤0.02 ≤0.02 ≤0.02.05 50.00 0.00 Meropenem ≤0.02 ≤0.02.05 ≤0.02.05 50.00 0.00 Version 2.025 ≤0.12->16 96.5 2.9 Piperacillin/ 1 2.025 ≤0.12->16 98.4 0.0 (321) Ertapenem ≤0.006 ≤0.06 99.4 0.0 Meropenem ≤0.06 ≤0.06 50.06 40.0 40.0 Meropenem ≤0.06 ≤0.06 50.06 40.0 40.0 1070 Ertapenem ≤0.06 ≤0.06 50.06 40.0 0.0 (107) Ertapenem ≤0.06 ≤0.05 50.00 0.0 0.0 Celepime ≤0.02 1.2 ≤0.6 50.06 50.06 0.0 0.0 (107) Ertapenem ≤0.06 ≤0.05 100.0 0.0 0.0 0.0		•			-			
Impenem ≤0.12 ≤0.12 ≤0.12 ≤0.06 5 100.0 0.0 Cefepime ≤0.12 0.25 ≤0.12->16 96.5 2.9 Piperacillin/ tzobactam 2 8 ≤0.5>64 92.7 3.4 Kiebsiella spp. Doripenem 0.03 0.06 0.016-16 98.7 0.3 (321) Ertapenem ≤0.008 0.12 ≥0.008-316 99.4 0.0 Meropenem ≤0.06 ≤0.06 ≤0.06-8 99.4 0.0 Cefepime ≤0.12 >16 ≤0.12-316 86.3 12.1 Proteus mirabilis Doripenem 0.12 0.25 0.03-1 10.00 0.0 (107) Ertapenem ≤0.008 0.016 ≤0.008-30 0.00 0.0 (107) Ertapenem ≤0.008 0.025 ≤0.02-4 100.0 0.0 (107) Ertapenem ≤0.008 ≤0.06 50.06 0.00 0.0 (107) Ertapenem <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Meropenem ≤0.06 ≤0.06 ≤0.06-0.5 100.0 0.0 Celepime ≤0.12 0.25 ≤0.12->16 96.5 2.9 Piperacilin/ tazobactam 2 8 ≤0.5->64 92.7 3.4 Klebsiella spp. Doripenem 0.03 0.06 0.016-16 99.7 0.3 (321) Ertapenem ≤0.008 0.12 2.008>-16 98.8 0.3 Meropenem ≤0.06 ≤0.06 ≤0.06-8 99.4 0.0 Celepime ≤0.12 >16 ≤0.12->16 86.3 12.1 Piperacillin/ tazobactam 4 >64 0.5-64 79.8 15.9 Protus mirabilis Doripenem 0.12 0.25 0.03-1 10.0 0.0 (107) Ertapenem ≤0.06 ≤0.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06		•						
Cefepime Piperacillin/ tazobactam 2 0.25 0.12->16 96.5 2.9 (321) Ertapenem 0.03 0.06 0.016-16 99.7 0.3 (321) Ertapenem ≤0.008 0.12 ≤0.008->16 98.8 0.3 (321) Ertapenem ≤0.06 ≤0.06 ≤0.06-8 99.4 0.0 Cefepime ≤0.12 >16 ≤0.12->16 86.3 12.1 Proteus mirabilis Doripenem 0.12 >25 0.03-11 100.0 0.0 (107) Ertapenem ≤0.008 0.016 ≤0.06-3 100.0 0.0 (107) Ertapenem ≤0.02 0.25 ≤0.12->16 96.3 3.7 Piperacillin/ tazobactam <0.5								
Piperacillin/ tazobactam 2 8 <0.5>-64 92.7 3.4 (321) Dorigenem 0.03 0.06 0.016-16 99.7 0.3 (321) Ertapenem <0.008								
tazobactam 2 8 <0.5-64 92.7 3.4 Klebsiella spp. Doripenem 0.03 0.06 0.016-16 99.7 0.3 (321) Ertapenem <0.008		•						
(321) Ertapenem ≤0.008 0.12 ≤0.008->16 98.8 0.3 Inipenem ≤0.12 0.25 ≤0.12-8 99.4 0.0 Meropenem ≤0.06 ≤0.06-8 99.4 0.0 Cefepine ≤0.12 >16 ≤0.12->16 86.3 12.1 Proteus mirabilis Doripenem 0.12 0.25 0.03-1 100.0 0.0 (107) Ertapenem ≤0.08 0.016 ≤0.08-4 99.1 0.0 (107) Ertapenem ≤0.02 0.25 ≤0.12->16 96.3 3.7 Piperacillin/ Eazobactam ≤0.5 1 ≤0.5-8 100.0 0.0 (39) Ertapenem ≤0.008 0.25 ≤0.08-4 97.4 0.0 Imipenem 0.5 1 ≤0.12-216 97.4 2.6 Piperacillin/ Eazobactam 4 >64 1->64 79.5 13.4 Enterobacter spp. Doripenem 0.06 0.12 ≤0.06-		•	2	8	≤0.5->64	92.7	3.4	
Laboration 0.12 0.25 5.012-516 90.4 0.00 Meropenem ≤0.06 ≤0.06-8 99.4 0.00 Cefepime ≤0.12 >16 ≤0.02-516 86.3 12.1 Proteus mirabilis Doripenem 0.12 0.25 0.03-1 100.0 0.00 (107) Ertapenem ≤0.008 0.016 ≤0.008-4 99.1 0.0 (107) Ertapenem ≤0.00 ≤0.008 ≤0.06-0.5 100.0 0.0 Cefepime ≤0.02 0.25 ≤0.02-24 100.0 0.0 Cefepime ≤0.02 0.25 ≤0.08-4 100.0 0.0 Cirbobacter spp. Doripenem 0.03 0.12 0.03-4 100.0 0.0 (39) Ertapenem ≤0.06 ≤0.06 ≤0.06-2 100.0 0.0 Cefepime ≤0.12 2 ≤0.12-2 100.0 0.0 Cefepime ≤0.12 2 ≤0.12-316 97.5 2.5		Doripenem	0.03	0.06	0.016-16	99.7	0.3	
Meropenem ≤0.06 ≤0.06 ≤0.06-8 99.4 0.0 Cefepime ≤0.12 >16 ≤0.12->16 86.3 12.1 Piperacillin/ tazobactam 4 >64 ≤0.5->64 79.8 15.9 Proteus mirabilis Doripenem 0.12 0.25 0.03-1 100.0 0.0 (107) Ertapenem ≤0.008 0.016 ≤0.008-4 99.1 0.0 (107) Ertapenem ≤0.02 0.25 ≤0.12->16 96.3 3.7 Piperacillin/ 0.00 0.0 Citrobacter spp. Doripenem 0.03 0.12 0.03-4 100.0 0.0 (39) Ertapenem ≤0.008 0.25 ≤0.06-2 100.0 0.0 Meropanem ≤0.06 ≤0.06-2 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <t< td=""><td>(321)</td><td>Ertapenem</td><td>≤0.008</td><td>0.12</td><td>≤0.008->16</td><td>98.8</td><td>0.3</td></t<>	(321)	Ertapenem	≤0.008	0.12	≤0.008->16	98.8	0.3	
Cefepime Piperacillin/ tazobactam ≤0.12 >16 ≤0.12->16 86.3 12.1 Proteus mirabilis (107) Doripenem 0.12 0.25 0.03-1 100.0 0.0 (107) Ertapenem ≤0.008 0.016 ≤0.008-4 99.1 0.0 (107) Ertapenem ≤0.006 ≤0.06-0.5 100.0 0.0 Meropenem ≤0.02 0.25 ≤0.12->16 96.3 3.7 Piperacillin/ tazobactam ≤0.5 1 ≤0.5-8 100.0 0.0 Chrobacter spp. Doripenem 0.03 0.12 0.03-4 100.0 0.0 (39) Ertapenem ≤0.06 ≤0.06 ≤0.06-2 100.0 0.0 Meropenem ≤0.06 ≤0.06 ≤0.06-2 100.0 0.0 Lazobactam 4 >64 1-564 79.5 13.4 Enterobacter spp. Doripenem 0.06 0.12 50.06-28 98.1 1.4 (215) Ertapenem 0.06 0.1		•	≤0.12	0.25	≤0.12-8	99.4	0.0	
Piperacillin/ tzzobactam 4 >64 ≤0.5>64 79.8 15.9 Proteus mirabilis Doripenem 0.12 0.25 0.03-1 10.00 0.0 (107) Ertapenem ≤0.008 0.016 ≤0.084 99.1 0.0 Imipenem 1 2 ≤0.12-4 100.0 0.0 Meropenem ≤0.02 0.25 ≤0.12->16 96.3 3.7 Piperacillin/ 0.0 0.0 Citrobacter spp. Doripenem 0.03 0.12 0.03-4 100.0 0.0 (39) Ertapenem ≤0.06 ≤0.06 ≤0.06-2 100.0 0.0 Greptime ≤0.12 2 ≤0.12-216 97.4 2.6 Piperacillin/ tzobactam 4 >64 1->64 79.5 13.4 Enterobacter spp. Doripenem 0.06 0.25 0.016-16 98.1 1.4 (215) Ertapenem 0.06 <td< td=""><td></td><td></td><td>≤0.06</td><td>≤0.06</td><td>≤0.06-8</td><td>99.4</td><td></td></td<>			≤0.06	≤0.06	≤0.06-8	99.4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			≤0.12	>16	≤0.12->16	86.3	12.1	
Proteus mirabilis Doripenem 0.12 0.25 0.03-1 100.0 0.0 (107) Ertapenem ≤0.008 0.016 ≤0.008-4 99.1 0.0 Meropenem ≤0.06 ≤0.066 ≤0.06-5 100.0 0.0 Meropenem ≤0.02 0.25 ≤0.12->16 96.3 3.7 Piperacillin/ tazobactam ≤0.5 1 ≤0.5-8 100.0 0.0 (39) Ertapenem ≤0.008 0.025 ≤0.08-4 97.4 0.0 Meropenem ≤0.06 ≤0.06 ≤0.06-2 100.0 0.0 Cetepime ≤0.12 2 ≤0.12-2 100.0 0.0 Meropenem ≤0.06 ≤0.06-2 100.0 0.0 0.0 Cetepime ≤0.12 ≤0.12-2 100.0 0.0 0.0 Literobacter spp. Doripenem 0.06 0.25 0.016-16 98.1 1.4 (215) Ertapenem 0.06 0.12 ≤0.06->8 98.		•						
(107) Ertapenem ≤0.008 0.016 ≤0.008-4 99.1 0.0 Meropenem ≤0.06 ≤0.06 ≤0.06 50.06 50.06 3.07 Piperacillin/ tazobactam ≤0.5 1 ≤0.58 100.0 0.0 Citrobacter spp. Doripenem 0.03 0.12 0.03-4 100.0 0.0 (39) Ertapenem ≤0.06 ≤0.06-2 100.0 0.0 Meropenem ≤0.12 2 ≤0.12-21 000.0 0.0 Clerbine ≤0.12 2 ≤0.12-516 97.4 2.6 Piperacillin/ tazobactam 4 >64 1->64 79.5 13.4 Enterobacter spp. Doripenem 0.06 0.12 ≤0.06->8 98.1 1.4 (215) Ertapenem 0.06 0.12 ≤0.06->16 95.8 2.8 Imipenem 0.25 1 ≤0.12->16 95.5 2.5 Meropenem 0.12 0.25 0.06->16 <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	<u> </u>							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
Meropenem ≤0.06 ≤0.06 ≤0.06-0.5 100.0 0.0 Cefepime ≤0.02 0.25 ≤0.12->16 96.3 3.7 Piperacillin/ tazobactam ≤0.5 1 ≤0.5-8 100.0 0.0 Citrobacter spp. Doripenem 0.03 0.12 0.03-4 100.0 0.0 (39) Ertapenem ≤0.008 0.25 ≤0.008-4 97.4 0.0 Imipenem 0.5 1 ≤0.12-2 100.0 0.0 Meropenem ≤0.06 ≤0.06 ≤0.06-2 100.0 0.0 Cefepime ≤0.12 2 ≤0.12->16 97.4 2.6 Piperacillin/ tazobactam 4 >64 1->64 79.5 13.4 Enterobacter spp. Doripenem 0.06 0.12 ≤0.06->8 98.1 1.4 (215) Ertapenem 0.06 0.12 ≤0.06->8 97.5 2.5 Meropenem ≤0.06 ≤0.06->8 97.5 2.5 <td>(107)</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td>	(107)	•						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		•						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			≤0.02	0.25	≤0.12->16	96.3	3.7	
$\begin{array}{c} \hline Citrobacter {\rm spp.} & {\rm Doripenem} & {\rm 0.03} & {\rm 0.12} & {\rm 0.03-4} & {\rm 100.0} & {\rm 0.0} \\ (39) & {\rm Ertapenem} & {\leq} 0.008 & {\rm 0.25} & {\leq} 0.008-4 & {\rm 97.4} & {\rm 0.0} \\ {\rm Impenem} & {\rm 0.5} & {\rm 1} & {\leq} 0.12-2 & {\rm 100.0} & {\rm 0.0} \\ {\rm Meropenem} & {\leq} 0.06 & {\leq} 0.06 & {\leq} 0.06-2 & {\rm 100.0} & {\rm 0.0} \\ {\rm Cefepime} & {\leq} 0.12 & {\rm 2} & {\leq} 0.12-{\rm >16} & {\rm 97.4} & {\rm 2.6} \\ {\rm Piperacillin/} & {\rm 1220bactam} & {\rm 4} & {\rm >64} & {\rm 1->64} & {\rm 79.5} & {\rm 13.4} \\ \hline {\rm Enterobacter {\rm spp.}} & {\rm Doripenem} & {\rm 0.06} & {\rm 0.25} & {\rm 0.016-16} & {\rm 98.1} & {\rm 1.4} \\ ({\rm 215}) & {\rm Ertapenem} & {\rm 0.06} & {\rm 0.25} & {\rm 0.016-16} & {\rm 98.1} & {\rm 1.4} \\ {\rm Cefepime} & {\leq} 0.12 & {\rm 4} & {\rm co.028->16} & {\rm 95.8} & {\rm 2.8} \\ {\rm Impenem} & {\rm 0.25} & {\rm 1} & {\leq} 0.02-{\rm 8} & {\rm 98.1} & {\rm 1.4} \\ {\rm Cefepime} & {\leq} 0.12 & {\rm 4} & {\rm co.12->8} & {\rm 97.2} & {\rm 0.5} \\ {\rm Meropenem} & {\rm co.06} & {\rm 0.12} & {\rm co.06->8} & {\rm 98.1} & {\rm 1.4} \\ {\rm Cefepime} & {\leq} 0.12 & {\rm 4} & {\rm co.12->8} & {\rm 97.5} & {\rm 2.5} \\ {\rm Meropenem} & {\rm co.06} & {\rm co.06->64} & {\rm 69.8} & {\rm 12.6} \\ \\ {\rm Serratia {\rm spp.}} & {\rm Doripenem} & {\rm 0.12} & {\rm 0.25} & {\rm 0.06->16} & {\rm 97.5} & {\rm 2.5} \\ {\rm Imipenem} & {\rm 0.5} & {\rm 1} & {\rm co.12->8} & {\rm 97.5} & {\rm 2.5} \\ {\rm Meropenem} & {\rm co.06} & {\rm co.06} & {\rm co.06->8} & {\rm 97.5} & {\rm 2.5} \\ {\rm Meropenem} & {\rm co.06} & {\rm co.06} & {\rm co.06->8} & {\rm 97.5} & {\rm 2.5} \\ {\rm Meropenem} & {\rm co.06} & {\rm co.06} & {\rm co.06->8} & {\rm 97.5} & {\rm 2.5} \\ {\rm Meropenem} & {\rm co.06} & {\rm co.06} & {\rm co.08->8} & {\rm 97.5} & {\rm 2.5} \\ {\rm Meropenem} & {\rm co.12} & {\rm 0.25} & {\rm 0.03-2} & {\rm 100.0} & {\rm 0.0} \\ (69) & {\rm Ertapenem} & {\rm 0.016} & {\rm 0.03} & {\rm co.08->8} & {\rm 97.5} & {\rm 2.5} \\ {\rm Cefepime} & {\rm co.12} & {\rm co.21} & {\rm co.06-1} & {\rm 100.0} & {\rm 0.0} \\ {\rm Meropenem} & {\rm co.06} & {\rm co.12} & {\rm co.06-1} & {\rm 100.0} & {\rm 0.0} \\ (69) & {\rm Ertapenem} & {\rm co.06} & {\rm co.12} & {\rm co.12} & {\rm co.01} & {\rm co.00} \\ {\rm deropenem} & {\rm co.06} & {\rm co.06} & {\rm co.06-1} & {\rm 100.0} & {\rm 0.0} $		•	<0.5	4	<05.8	100.0	0.0	
	Citrobactor enn							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		•						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	()							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		•		-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		•						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		•	20.12	2	20.12 >10	07.1	2.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4	>64	1->64	79.5	13.4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Enterobacter spp.	Doripenem	0.06	0.25	0.016-16	98.1	1.4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(215)	Ertapenem	0.06	1	≤0.008->16	95.8	2.8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Imipenem	0.25	1	≤0.12->8	97.2	0.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Meropenem	≤0.06	0.12	≤0.06->8	98.1	1.4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Cefepime	≤0.12	4	≤0.12->16	95.8	2.8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Piperacillin/						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		tazobactam	4	>64	≤0.5->64	69.8	12.6	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Doripenem	0.12	0.25	0.06->16	97.5	2.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(80)	Ertapenem	0.03	0.06	0.016->16	97.5	2.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Imipenem		1		97.5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			≤0.06	≤0.06			2.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			≤0.12	1	≤0.12->16	98.8	1.2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		•						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(09)							
$\begin{array}{c cccc} Cefepime & \leq \! 0.12 & 2 & \leq \! 0.12 \!$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		•						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			≤0.12	2	≤0.12->16	94.2	4.3	
		•	<0.5	2	<0.5-16	100.0	0.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Salmonalla enn							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c cccc} Meropenem & \leq \! 0.06 & \leq \! 0.06 & \leq \! 0.06 & 100.0 & 0.0 \\ Cefepime & \leq \! 0.12 & \leq \! 0.12 & \leq \! 0.12 & 100.0 & 0.0 \\ Piperacillin/ & & & & \\ tazobactam & 4 & 4 & 1-8 & 100.0 & 0.0 \\ a. \ \text{Susceptibility criteria of the CLSI (2005).} \end{array}$								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		•						
Piperacillin/ tazobactam 4 4 1-8 100.0 0.0 a. Susceptibility criteria of the CLSI (2005).								
tazobactam 4 4 1-8 100.0 0.0 a. Susceptibility criteria of the CLSI (2005).		-	_0.1Z	<u>_0.12</u>	20.12	100.0	0.0	
a. Susceptibility criteria of the CLSI (2005).		•	4	4	1-8	100.0	0.0	
	a. Susceptibility criteria of the							
			R) are for con	nparative purpo	oses only and based i	upon those for pe	eer agents.	

• Doripenem was very active against the most common species of Enterobacteriaceae isolated (MIC₉₀ values, 0.03 – 0.25; median MIC_{90} , 0.12 mg/L). Among the approved carbapenems, $\geq 95.8\%$ of each species or group studied were susceptible (Table 2).

• At a break point of 4 mg/L (equivalent to that of peer agents), $\geq 97.5\%$ of each Enterobacteriaceae spp. or group was inhibited by doripenem. This included the 8.3% and 26.9% of E. coli and *Klebsiella* spp., respectively, that met ESBL screening criteria (ceftazidime or ceftriaxone or aztreonam MIC values ≥ 2 mg/L).

- Against Gram-positive cocci, doripenem was highly potent against oxacillin-susceptible *S. aureus* and oxacillin-susceptible CoNS (MIC₉₀ values for both, 0.06 mg/L). In contrast, *E. faecalis* was marginally inhibited by doripenem (MIC_{50/90} at 4 and 8 mg/L, respectively); none of the carbapenems displayed activity against *E. faecium* (MIC_{50/90} at \geq 16 mg/L) (Table 3).
- Doripenem was very active against S. pneumoniae (MIC₅₀, ≤ 0.008 mg/L and MIC₉₀, 0.5 mg/L), viridans group streptococci (MIC₅₀, 0.06 mg/L) and MIC₉₀, 1 mg/L), and β -hemolytic streptococci (MIC₅₀, ≤ 0.008 mg/L and MIC_{90} , 0.03 mg/L). Despite resistance to penicillin among *S. pneumoniae* and viridans group streptococci (17.6% and 14.7%, respectively), no doripenem MIC value exceeded 4 mg/L

organis	sins, compared	ms, compared to selected β -lactam agents.						
	MIC (mg/L) % by cate							
Organism (no. tested)	Antimicrobial agent	50%	90%	Range	Susceptible	Resista		
Staphylococcus aureus	B Doripenem	0.06	0.06	0.016-2	100.0 ^b	0.0		
oxacillin-susceptible (1,231)	Ertapenem	0.12	0.25	0.016-8	99.9	0.1		
	Imipenem	≤0.12	≤0.12	≤0.12-0.5	100.0	0.0		
	Meropenem	0.12	0.12	≤0.06-2	100.0	0.0		
	Piperacillin/							
	tazobactam	2	2	≤0.5-16	99.8	0.2		
	Ceftriaxone	4	4	≤0.25-16	99.8	0.0		
	Cefepime	2	4	0.25-8	100.0	0.0		
Coagulase-negative	Doripenem	0.03	0.06	0.016->16	99.1	0.9		
staphylococci	Ertapenem	0.12	0.25	0.016->16	99.1	0.9		
oxacillin-susceptible (106)	Imipenem	≤0.12	≤0.12	≤0.12-0.25	100.0	0.0		
(100)	Meropenem	0.12	0.12	≤0.06-0.25	100.0	0.0		
	Piperacillin/							
	tazobactam	≤0.5	1	≤0.5-2	100.0	0.0		
	Ceftriaxone	2	4	0.5-8	100.0	0.0		
	Cefepime	1	2	0.25-2	100.0	0.0		
Enterococcus faecalis	Doripenem	4	8	0.03->16	-	-		
(263)	Ertapenem	8	16	0.12->16	-	-		
	Imipenem	1	4	≤0.12->8	-	-		
	Meropenem	8	>8	0.12->8	-	-		
	Ampicillin	2	4	1->16	99.2	0.8		
	Levofloxacin	1	>4	0.06->4	71.1	28.9		
	Vancomycin	1	2	0.25->16	98.9	1.1		
E. faecium	Doripenem	>16	>16	1->16		_		
(126)		>16	>16	2->16	_	-		
	Imipenem	>8	>8	0.5->8	-	-		
	Meropenem	>8	>8	1->8	_	_		
	Ampicillin	>16	>16	≤1->16	13.5	86.5		
	Levofloxacin	>4	>4	0.5->4	21.4	71.4		
	Vancomycin	1	>16	0.25->16	86.5	12.7		
S. pneumoniae	Doripenem	ı ≤0.008	0.5	<u>≤0.008-2</u>	00.5	-		
(603)		<u>≤0.008</u>			-			
(000)	Ertapenem		0.5	≤0.008-2	99.8	0.0		
	Imipenem	≤0.12	0.25	≤0.12-0.5	82.9	0.0		
	Meropenem	≤0.03	0.5	≤0.03-1	81.8	3.2		
	Penicillin	≤0.016	2	≤0.016->4	67.7	17.6		
	Ceftriaxone	0.03	1	≤0.008-2	83.1°	1.0		
<u></u>	Cefepime	≤0.06	1	≤0.06-2	79.4°	3.0		
Viridans group streptococci (68)	Doripenem	0.06	1	≤0.008-4	-	-		
	Ertapenem	0.12	2	≤0.008-8	-	-		
	Imipenem	≤0.12	0.5	<0.12-2	-	-		
	Meropenem	0.12	1	≤0.06-4	88.2	-		
	Penicillin	0.12	4	≤0.016-8	54.4	14.7		
	Ceftriaxone	≤0.25	4	≤0.25-16	85.3	10.3		
	Cefepime	0.5	2	≤0.12-16	79.4	7.4		
β-hemolytic streptococci (159)	Doripenem	≤0.008	0.03	≤0.008-0.06	-	-		
	Ertapenem	0.016	0.03	≤0.008-0.06	100.0	-		
	Imipenem	≤0.12	≤0.12	≤0.12	-	-		
	Meropenem	≤0.06	≤0.06	≤0.06-0.12	100.0	-		
	Penicillin	≤0.016	0.06	≤0.016-0.12	100.0	-		
	Ceftriaxone	≤0.25	≤0.25	≤0.25-0.5	100.0	-		
	Cefepime	≤0.12	≤0.12	≤0.12-0.25	100.0	_		

b. Break points for doripenem (≤4/8/≥16 mg/L for S/I/R) are for comparative purposes only and based upon those for peer agents. . Meningitis break points

- Doripenem exhibited enhanced potency (two-fold; MIC₅₀, 0.5 mg/L) among indicated carbapenems tested against *P. aeruginosa*, and was similar in potency to imipenem and meropenem against Acinetobacter spp. (Table 4).
- Among imipenem- and meropenem-resistant *P. aeruginosa*, 21.5 and 13.6%, respectively, had doripenem MIC values of ≤ 4 mg/L.
- All agents tested were highly active against *H. influenzae* isolates (MIC₉₀ values, ≤ 0.5 mg/L), regardless of β -lactamase production (100% susceptible).

		MIC (mg/L) % by categoryª				tegory ^a
Organism (no. tested)	Antimicrobial agent	50%	90%	Range	Susceptible	Resistan
Acinetobacter spp.	Doripenem	4	16	0.03->16	54.4 ^b	24.8
(149)	Ertapenem	16	>16	≤0.008->16	-	-
	Imipenem	4	>8	≤0.12->8	51.0	44.3
	Meropenem	8	>8	≤0.06->8	49.0	33.6
	Cefepime	16	>16	≤0.12>16	34.9	45.6
	Piperacillin/					
	tazobactam	>64	>16	≤0.5->64	24.2	69.8
Pseudonomas	Doripenem	0.5	16	0.03->16	82.7	10.6
aeruginosa (491)	Ertapenem	8	>16	0.06->16	-	-
	Imipenem	1	>8	≤0.12->8	72.7	13.2
	Meropenem	1	>8	≤0.06->8	76.4	16.5
	Cefepime	4	>16	0.25->16	71.9	15.1
	Piperacillin/					
	tazobactam	8	>64	≤0.5->64	77.6	22.4
Haemophilus influenzae β-lactamase-negative	Doripenem	0.06	0.25	≤0.008-1	-	-
	Meropenem	<0.03	0.12	≤0.03-0.25	100.0	-
(384)	Ceftriaxone	≤0.008	≤0.008	≤0.008-0.5	100.0	-
	Cefepime	≤0.06	0.12	≤0.06-0.25	100.0	-
	Levofloxacin	≤0.03	≤0.03	≤0.03-0.06	100.0	-
β-lactamase-positive (75)	Doripenem	0.06	0.5	≤0.008-0.5	-	-
	Meropenem	≤0.03	0.06	≤0.03-0.25	100.0	-
	Ceftriaxone	≤0.008	≤0.008	≤0.008-0.03	100.0	-
	Cefepime	≤0.06	0.12	≤0.06-0.25	100.0	-
	Levofloxacin	≤0.03	≤0.03	≤0.03-0.06	100.0	-

CONCLUSIONS

- Carbapenems are assuming a greater therapeutic role in many nations, as multidrug resistance (including emergence of Ambler class A, C, and D β -lactamases) spreads.
- Results of this European surveillance program identified doripenem as a promising broad-spectrum agent with certain potency advantages against *P. aeruginosa* and some Grampositive cocci (streptococci), compared with other class agents.
- Doripenem appears to offer advantages in potency when compared with currently marketed carbapenems and other extended-spectrum β -lactams. Continued, accelerated, development in human clinical trials appears warranted.

SELECTED REFERENCES

1. Chen Y, Garber E, Zhao Q, et al. In vitro activity of doripenem (S-4661) against multidrug-resistant gram-negative bacilli isolated from patients with cystic fibrosis. Antimicrob Agents Chemother 2005;49:2510-2511. 2. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 15th informational supplement M100-S15. Wayne, PA: CLSI; 2005. 3. Fritsche TR, Stilwell MG, Jones RN. Antimicrobial activity of doripenem (S-4661): a global surveillance report (2003). Clin Microbiol Infect 2005;11:974-984. 4. Ge Y, Wikler MA, Sahm DF, et al. In vitro antimicrobial activity of doripenem, a new carbapenem. Antimicrob Agents Chemother 2004;48:1384-1396. 5. Jones RN, Sader HS, Fritsche TR. Comparative activity of doripenem and three other carbapenems tested against Gramnegative bacilli with various beta-lactamase resistance mechanisms. *Diagn Microbiol* Infect Dis 2005;52:71-74. 6. Mushtaq S, Ge Y, Livermore DM. Doripenem versus *Pseudomonas aeruginosa* in vitro: activity against characterized isolates, mutants, and transconjugants and resistance selection potential. Antimicrob Agents Chemother 2004;48:3086-3092. 7. National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Document M7-A6. Wayne, PA: NCCLS; 2003.

16th Annual European Congress of Clinical Microbiology and Infectious Diseases (ECCMID); April 1–4, 2006; Nice, France

b. Break points for doripenem ($\leq 4/8/\geq 16$ mg/L for S/I/R) are for comparative purposes only and based upon those for peer agents.