Activity of Ceftaroline Tested against Methicillin-resistant Staphylococcus aureus Clones from Australia and New Zealand (2010)

P1880

JM BELL, RN JONES, DJ FARRELL, JD TURNIDGE SA Pathology, Adelaide, Australia; JMI Laboratories, North Liberty, Iowa, USA

ECCMID 2012 JMI Laboratories North Liberty, IA, USA www.jmilabs.com ph. 319.665.3370, fax 319.665.3371 ronald-jones@jmilabs.com

Abstract

Objective: To evaluate the activity of ceftaroline (CPT) against methicillin-resistant Staphylococcus aureus (MRSA) clones isolated from patients in Australia (AUS) and New Zealand (NZ). CPT, the active metabolite of the prodrug ceftaroline fosamil, is a novel cephalosporin exhibiting broad-spectrum in vitro bactericidal activity against Gram-positive organisms, including MRSA. We evaluated the activity of CPT against MRSA clones isolated from patients in AUS and NZ.

Methods: Susceptibility testing for CPT and comparator antimicrobials was performed using CLSI broth microdilution methods on 141 isolates obtained from AUS (n=131) and NZ (n=10) as part of the SENTRY Programme, Asia Pacific Region (2010). Isolates were assigned to their clonal complex (CC) using a novel HRM SNP typing assay (Minim typing).

Results: Hospital-associated clones (CC8 and CC22) accounted for 48% of all MRSA isolates examined. CPT demonstrated good activity against all MRSA CC's. CPT MIC₉₀ values (0.5 mg/L) were lower for MRSA strains with community-associated clonal complexes (CC93, CC1, CC30, CC5, and CC88). Resistance to mupirocin, tetracycline, gentamicin, fusidic acid, erythromycin, or cotrimoxazole did not affect CPT activity against MRSA isolates (overall MIC₉₀, 1 mg/L; range 0.5-2 mg/L by CC). No vancomycinintermediate or -resistant strains were detected.

Conclusion: CPT exhibited potent activity against MRSA isolates and commonly circulating clonal complexes from AUS and NZ, in both community and hospital settings. All community-associated isolates had both MIC₅₀ and MIC₉₀ of 0.5 mg/L. Compared to community-associated MRSA clones, some hospital clones had slightly higher CPT MIC values, especially CC8 (MIC₉₀, 2 mg/L).

Introduction

Ceftaroline, the active metabolite of the prodrug ceftaroline fosamil, is a novel cephalosporin exhibiting broad-spectrum in vitro bactericidal activity against both Gram-negative and Grampositive organisms, including methicillin-resistant Staphylococcus aureus (MRSA). We hypothesized that community-associated strains of MRSA would have a different ceftaroline MIC distribution to hospital-associated strains, as observed with other β-lactams.

Materials and Methods

Isolates

S. aureus isolates from the SENTRY Antimicrobial Surveillance Programme (Australia [six medical centres from six states] and New Zealand [two medical centres]) collected during 2010 were analysed. Isolates were collected from inpatients with bacteraemia, pneumonia, complicated skin and skin-structure infections, and other infections.

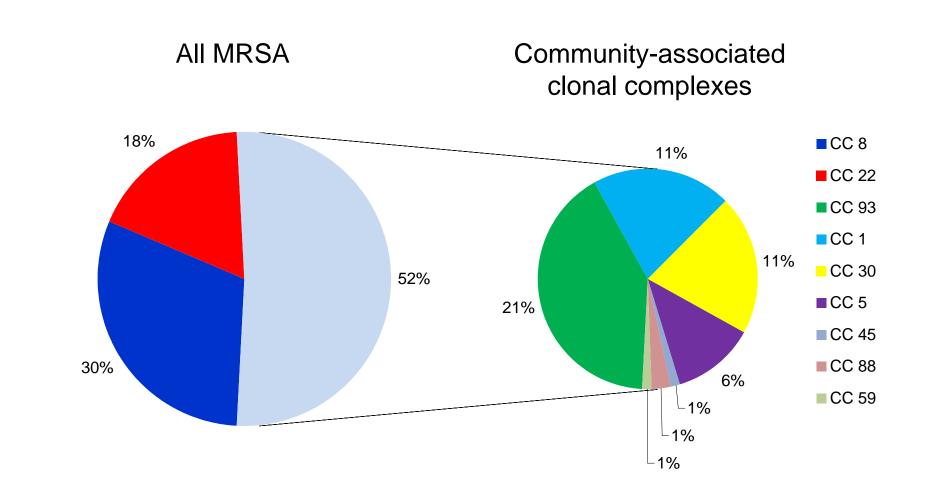
Susceptibility testing

Susceptibility testing for ceftaroline and comparator antimicrobials was performed using custom-made dry-form broth microdilution panels prepared by ThermoFisher Scientific (formerly Trek Diagnostic Systems, Inc.), according to Clinical and Laboratory Standards Institute (CLSI) standards, and susceptibility breakpoints were used to determine susceptibility/resistance rates (CLSI and EUCAST, 2012). Isolates with an oxacillin MIC at >2 mg/L and *mecA* positive were selected for further analysis.

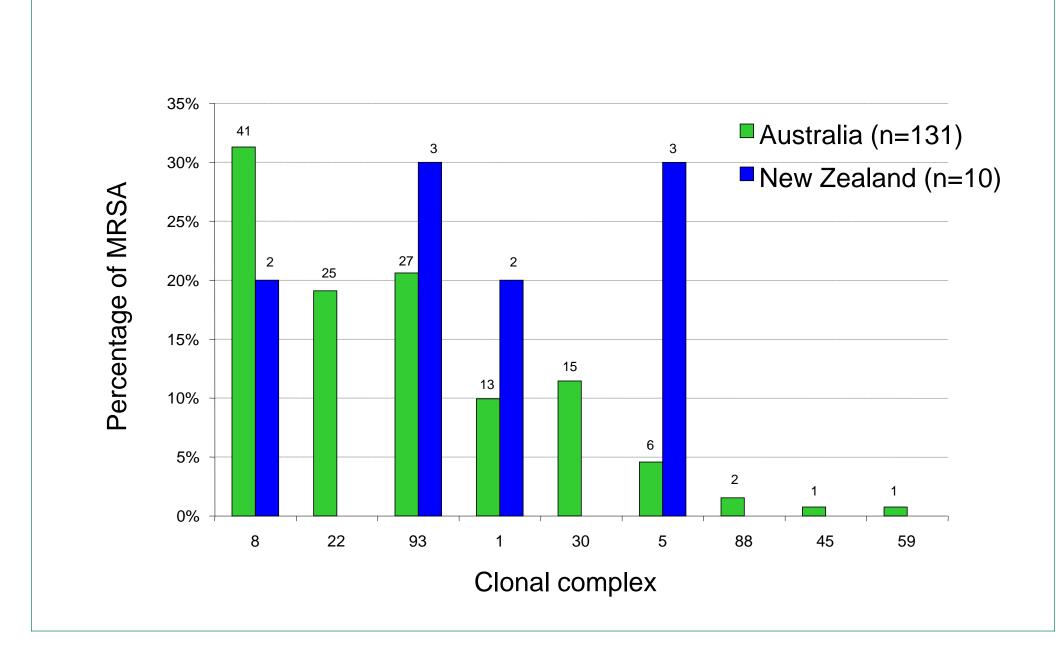
Methods-continued

High Resolution Melt SNP typing assay (Minim)

The Minim assay is a multi-locus sequence typing (MLST) based *S. aureus* typing scheme that uses high resolution melting analysis of single nucleotide polymorphism (SNP)-nucleated PCR fragments. Six targets were amplified (arcC, gmk, aroE, pta, tpi36, tpi241) using a real-time PCR platform (Roche LightCycler® 480 II system) with LightCycler® 480 High Resolution Melting Master (Roche), using 10 µl reaction volume. Theoretical melt curves from the known sequences of each target was calculated and assigned a unique number. A complete combination of all six targets melted corresponds to an allelic profile, or melt curve number (MelT).


Assignment to Clonal Complex

A MelT key was used to convert the MelT number into a clonal complex (CC).


Results

- Hospital-associated clones (CC8 and CC22) accounted for 48% of all MRSA isolates examined (Figure 1).
- The proportion of different CC by country is shown in Figure 2.
- Ceftaroline demonstrated good activity against all MRSA CCs (Table 1). Ceftaroline MIC₉₀ values (0.5 mg/L) were lower for MRSA strains with community-associated CCs (CC93, CC1, CC30, CC5, and CC88).
- CC22 MICs were similar to those of communityassociated strains.
- Resistance to mupirocin, tetracycline, gentamicin, fusidic acid, erythromycin, or cotrimoxazole did not adversely affect ceftaroline activity against MRSA isolates (overall MIC₉₀, 1 mg/L; range, 0.5-2 mg/L by CC).
- Multi-drug resistance was rare amongst community-associated CCs, but was seen in the majority of hospital-associated CCs.
- The different CCs show distinct resistance profiles (Table 2). Two strains in CC8 with none or one additional resistance probably represent community-associated strains, rather than the dominant multi-resistant sequence type ST239 from CC8.
- No vancomycin-intermediate or -resistant strains were detected.

Figure 1. Distribution of clonal complexes

Figure 2. Clonal complexes by country

Table 1. Ceftaroline MIC distribution by clonal complex Clonal Ceftaroline MIC (mg/L) complex 0.25 MIC_{50} MIC_{90} (no. tested) Hospital-associated 34 8 (43) 21 0.5 22 (25) Community-associated 0.5 93 (30) 0.5 1 (15) 0.5 0.5 0.5 30 (15) 14 0.5 5 (9) 0.5 88 (2) 0.5 45 (1) 0.5 59 (1) 0.5 All (141) 94

				Community-associated							
Resistance profile ^b		8°	22	93	1	30	5		88	59	Tota
	d	1		29	10	14	5		1		60
Fus					3		2				5
Tet						1					1
Cip			6					1			7
Ery		1		1	1		2		1	1	7
Ery	Fus				1						1
Ery G	Jen	1									1
Ery Tet		1									1
Ery TetG	Gen	7									7
EryCip		1	19								20
EryCip G	Gen	1									1
EryCipTet		1									1
EryCipTetGen		28									28
EryCipTetGenFus		1									1
		43	25	30	15	15	9	1	2	1	141

- a. HA = hospital-associated.
- Ery, erythromycin-resistant; Cip, ciprofloxacin-resistant; Tet, tetracycline-
- resistant; Gen, gentamicin-resistant; Fus, fusidic acid-resistant. c. May include a small number of community-associated strains.
- d. no additional resistances detected.

Conclusions

- Ceftaroline exhibited potent in vitro activity against MRSA isolates and commonly circulating clonal complexes from Australia and New Zealand in both community and hospital settings.
- All community-associated isolates had both MIC_{50} and MIC_{90} of 0.5 mg/L.
- Compared to community-associated MRSA clones plus hospital-associated CC22 (MIC₅₀ and MIC₉₀, of 0.5 and 0.5 mg/L respectively), CC8 had a slightly raised MIC₅₀ and MIC₉₀ (1 and 2 mg/L respectively).

References

- Bell JM, Jones RN, Farrell DJ, Giffard PM, Turnidge JD (2011). Differential β-lactam susceptibility between hospital and community-associated clonal complexes of methicillin-resistant Staphylococcus aureus from Australia and New Zealand (2009-2010). Abstr. C2-084. 51st ICAAC, September 12-15, 2011, Chicago, IL, USA.
- 2. Clinical and Laboratory Standards Institute (2012). M07-A9. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard: ninth edition. Wayne, PA: CLSI.
- 3. Clinical and Laboratory Standards Institute (2012). M100-S22. Performance standards for antimicrobial susceptibility testing: 22nd informational supplement. Wayne, PA: CLSI.
- 4. Lilliebridge RA, Tong SY, Giffard PM, Holt DC (2011). The utility of high-resolution melting analysis of SNP nucleated PCR amplicons-an MLST based Staphylococcus aureus typing scheme. PLoS One 6: e19749.

Acknowledgments

We wish to thank all of the SENTRY Programme contributing laboratories throughout Australia and New Zealand. This study at JMI Laboratories was part funded by an Educational/Research grant from AstraZeneca, and JMI received compensation fees for services in relation to preparing the abstract/poster, which was funded by AstraZeneca.