Rezafungin Activity Against Echinocandin–Nonwildtype Candida glabrata Clinical Isolates Collected in European countries (2014–2021)

Mariana Castanheira, Paul R Rhomberg, Lalitagauri M Deshpande, Cecilia G. Carvalhaes[‡] Element Materials Technology (JMI Laboratories), North Liberty, Iowa, USA; [‡]New affiliation: bioMerieux, Hazelwood, Missouri, USA

Introduction

- Echinocandins are often used as first-line therapy against *C. glabrata* infections due to the high fluconazole resistance rates in this species.
- Resistance to echinocandins has been reported in *C. glabrata* isolates and is associated with mutations in hot spots (HS) regions of the Fks1- and Fks2-encoding genes
- Rezafungin is a long-acting echinocandin approved by the US

Figure 1. Echinocandin NWT and Fks alteration among *C. glabrata* isolates collected in European hospitals from 2014 to 2022

- FDA to treat candidemia and invasive candidiasis
- The activity of rezafungin and other echinocandins was evaluated against a collection of echinocandin–nonwildtype (NWT) *C. glabrata* isolates

Methods

- A total of 1,257 *C. glabrata* isolates were collected in 2014–2022 from 41 European hospitals from 2014–2022.
- Only 1 isolate per patient episode was included.
- All isolates were identified by MALDI-TOF MS and/or DNA sequencing.
- Isolates were tested by CLSI reference broth microdilution method (M27).
- CLSI breakpoints (M27M44S) and epidemiological cut-off values (M57S) were applied, including recently approved rezafungin breakpoints (≤0.5 mg/L for susceptible).
- Echinocandin-NWT isolates were submitted to *FKS* analysis by PCR or whole genome sequencing as previously described.

Results

Figure 2. Activity of echinocandins and fluconazole against *C. glabrata* isolates

Echinocandin nonwildtype FKS (12)

MIC (mg/L)
-------	-------

Country	Rezafungin	Anidulafungin	Caspofungin	Micafungin	Fks alteration
Italy	0.12	0.25	0.06	0.03	Fks1 HS1 L630Q
Hungary	1	1	1	0.5	Fks2 HS1 F659 deletion
Spain	1	1	0.25	0.25	Fks2 HS1 F659 deletion
Spain	0.5	1	0.5	0.25	Fks2 HS1 F659 deletion
Slovenia	0.5	1	0.25	0.06	Fks2 HS1 F659Y
France	1	2	0.5	0.5	Fks2 HS1 S663P
Ireland	2	4	2	0.5	Fks2 HS1 S663P
Ireland	0.25	0.5	0.12	0.12	Fks2 HS1 S663P
Ireland	0.06	0.12	0.12	0.06	Fks2 HS1 S663P
Turkey	1	2	1	1	Fks2 HS1 S663P
Spain	1	2	>4	1	Fks2 HS1 S663P
Greece	1	2	4	1	Fks2 HS1 S663P

- Among 1,257 *C. glabrata* isolates, 26 (2.1%) were NWT to the echinocandins (Figure 1).
- 12 NWT isolates displayed Fks alterations (46.2% of echinocandin-NWT isolates; 0.9% overall)
 - 11 isolates exhibited Fks2 HS1 alterations (7 S663F and 4 F659Y/deletion) and 1 isolate displayed a Fks1 HS1 L630Q amino acid change
- Rezafungin displayed similar activity to other echinocandins against the overall *C. glabrata* isolates, inhibiting 99.4% at ≤0.5 mg/L (Figure 2).
- Anidulafungin, caspofungin, and micafungin susceptibility rates were 98.0%, 98.8%, and 99.0%, respectively.
- Rezafungin was active against 73.1% of the 26 echinocandin-NWT *C. glabrata*.
- The susceptibility rates to anidulafungin, caspofungin, and micafungin were 46.2%, 65.4%, and 57.7%, respectively.
- Rezafungin was active against 41.7% of the echinocandin-NWT isolates that carried Fks alterations while anidulafungin, caspofungin, and micafungin were active against 8.3%, 25.0%, and 25.0% of these isolates.
- Against echinocandin-NWT isolates that did not carry *FKS* mutations (non-*FKS*), the activity of rezafungin, anidulafungin, caspofungin, and micafungin was 100.0%, 78.6%, 100.0%, and 85.7%, respectively.

collected in European hospitals from 2014 to 2022

S	% Susceptible dose-dependen	50 40 30 20 10		41.7		5.2		25.0		25.0		50.0
			Rezafungin		Anidulafungin		Caspofungin		Micafungin		Fluconazole	
		I	MIC _{50/90}	%S	MIC 50/90	%S	MIC _{50/90}	%S	MIC 50/90	%S	MIC _{50/90}	%SDD
. glabr	rata (1,257)	(0.03/0.12	99.4	0.06/0.12	98.0	0.03/0.06	98.8	0.015/0.03	99.0	4/8	95.7
chinod	candin-wildtype (1,231)	(0.03/0.06	100.0	0.06/0.12	99.4	0.03/0.06	99.7	0.015/0.03	100.0	4/8	95.9
chinod	candin-nonwildtype (26)	(0.25/1	73.1	0.25/2	46.2	0.12/2	65.4	0.06/1	57.7	16/128	69.2
chinod	candin-nonwildtype FKS (12)	1	1/2	41.7	1/2	8.3	0.5/4	25.0	0.25/1	25.0	4/16	91.7
chinod	candin-nonwildtype non-FKS (1	4) (0.25/0.5	100.0	0.25/0.5	78.6	0.06/0.25	100.0	0.06/0.12	85.7	64/128	50.0

Acknowledgments

E

F

E E

E

The authors thank all the SENTRY Program participants for providing the isolates used in this study.

References

Funding

This study was supported by Mundipharma. M Castanheira, PR Rhomberg, LM Deshpande, CG Carvalhaes were of Element Materials Technology (JMI Laboratories) at the time of this study, which was paid consultant to Mundipharma in connection with the development of this poster.

• Fluconazole susceptibility rates ranged from 50.0% to 95.9% and was lowest among non-*FKS* echinocandin-NWT isolates.

Conclusions

- Rezafungin and other echinocandins demonstrated potent *in vitro* activity against *C. glabrata* isolates collected in European hospitals from 2014 to 2022.
- Rezafungin remained active against 73.1% of the most isolates of the *C. glabrata* displaying an echinocandin-NWT phenotype with or without Fks alterations.
- Rezafungin favourable PK/PD profile allow for the activity against some echinocandin-NWT phenotype with or without Fks alterations.

ECCMID 2024, April 27–30, 2024, Barcelona, Spain

Pappas, P.G., Kauffman, C.A., Andes, D.R., Clancy, C.J., Marr, K.A., Ostrosky-Zeichner, L., et al., *Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America*. Clin Infect Dis, 2016. **62**(4): e1-50.

Carvalhaes, C.G., Klauer, A.L., Rhomberg, P.R., Pfaller, M.A., and Castanheira, M., *Evaluation of Rezafungin Provisional CLSI Clinical Breakpoints and Epidemiological Cutoff Values Tested against a Worldwide Collection of Contemporaneous Invasive Fungal Isolates (2019 to 2020)*. J Clin Microbiol, 2022. **60**(4): e0244921.

CLSI, *M27 M44S Ed3. Performance standards for antifungal susceptibility testing of yeasts.* 2022, Clinical and Laboratory Standards Institute: Wayne, PA.

CLSI, *M57S Ed4. Epidemiological cutoff values for antifungal susceptibility testing*. 2022, Clinical and Laboratory Standards Institute: Wayne, PA.

CLSI, *M27 Ed4*. *Reference method for broth dilution antifungal susceptibility testing of yeasts*. 2017, Clinical and Laboratory Standards Institute: Wayne, PA.

Contact

Mariana Castanheira, Ph.D., FIDSA, FAAM 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: mariana.castanheira@ element.com To obtain a PDF of this poster:

SCAN ME

Scan the QR code or visit https://www.jmilabs.com /data/posters/ECCMID2024 _23-MUN-03_P1_ECH _NWT_C_glabrata.pdf

Charges may apply. No personal information is stored.