Poster # C-771

Antimicrobial Activity of Ceftolozane/Tazobactam and Comparator Agents Tested Against **Pseudomonas aeruginosa** Isolates From United States Medical Centers (2013)

AMENDED ABSTRACT

BACKGROUND: Ceftolozane/tazobactam (TOL/TAZ) is a novel antibacterial with activity against *P. aeruginosa* (PSA) and most ESBL-producing Enterobacteriaceae. TOL/TAZ is currently under review by the FDA. Studies in VAP/HAP are ongoing.

METHODS: 1081 PSA isolates were consecutively collected in 2013 from 30 USA medical centers by the Program to Assess Ceftolozane/Tazobactam Susceptibility (PACTS). Susceptibility (S) testing was performed by CLSI broth microdilution methods (TOL/TAZ at a fixed 4 µg/mL of TAZ).

RESULTS: TOL/TAZ (MIC_{50/00}, 0.5/2 μ g/mL) was 4- to 16-fold more active than ceftazidime (CAZ; MIC_{50/90}, 2/32 μ g/mL; 84.7% S) and inhibited 98.2 and 96.4% of isolates at MIC of \leq 8 and \leq 4 µg/mL, respectively (Table summarizes the activities of anti-PSA agents). The highest TOL/TAZ MIC among CAZ-S strains was 8 μ g/mL (99.3% inhibited at \leq 2 μ g/mL). TOL/TAZ inhibited 88.5% of CAZ non-S (MIC_{50/90}, 2/16 μ g/mL) and 92.8% of meropenem (MEM) non-S (MIC_{50/90}, 1/8 μ g/mL) PSA at \leq 8 μ g/mL. Among PSA strains non-S to both CAZ and MEM (85 strains), TOL/TAZ (MIC_{50/90}, 4/>32 μ g/mL) inhibited 82.4% at ≤8 μ g/mL. TOL/TAZ was also active against strains non-S to MEM, CAZ, and piperacillin/tazobactam (P/T; 84.2% inhibited at \leq 8 µg/mL). At MIC \leq 8 µg/mL, TOL/TAZ inhibited 89.2 and 93.7% of PSA non-S to gentamicin (GEN) and ciprofloxacin (CIP), respectively. Among PSA strains non-S to both GEN and CIP (85 strains), TOL/TAZ inhibited 87.1% at $\leq 8 \mu g/mL$. Further, 82.7% (43/52) of strains non-S to CIP, GEN, and MEM had TOL/TAZ MIC of $\leq 8 \mu g/mL$. Overall, the most active agents were TOL/TAZ (MIC_{50/90}, 0.5/2 μ g/mL), colistin (MIC_{50/90}, 1/2 μg/mL; 99.9% S), and amikacin (MIC_{50/90}, 2/8 μg/mL; 96.8% S). S rates for CAZ (84.7%), cefepime (83.5%), P/T (78.5%), MEM (80.6%), doripenem (84.2%), CIP (76.6%), and GEN (88.9%) were lower than TOL/TAZ at \leq 8 (98.2%) or \leq 4 µg/mL (96.4%).

CONCLUSIONS: TOL/TAZ exhibited potent activity against recent USA clinical PSA and provided greater coverage than β -lactams currently available for treatment of *P. aeruginosa* infections.

	MIC (J							
Antimicrobial agent	50%	90%	- %Sª	%Rª				
Ceftolozane/tazobactam	0.5	2	98.2 ^b					
Ceftazidime	2	32	84.7	11.4				
Cefepime	2	16	83.5	7.2				
Piperacillin/tazobactam	8	>64	78.5	11.9				
Meropenem	0.5	8	80.6	13.0				
Doripenem	0.5	4	84.2	7.1				
Ciprofloxacin	0.12	>4	76.6	17.5				
Gentamicin	≤1	8	88.9	8.4				
Amikacin	2	8	96.8	2.1				
Colistin	1	2	99.9	0.1				
aAccording to CLSI criteria; ^b % inhibited at ≤8 μg/mL.								

INTRODUCTION

Ceftolozane is a novel oxyimino-aminothiazolyl cephalosporin with potent activity against Enterobacteriaceae (similar to other oxyimino-aminothiazolyl cephalosporins) and has demonstrated greater activity (as compared with ceftazidime) against *Pseudomonas aeruginosa*. Ceftolozane has stability against many *P. aeruginosa* resistance mechanisms, including AmpC hyperproduction and efflux mechanisms; furthermore, ceftolozane is little affected by porin deficiency. However, as with other oxyimino-aminothiazolyl cephalosporins, ceftolozane's activity is compromised in bacteria-producing extendedspectrum β-lactamases (ESBLs), stably derepressed AmpC β-lactamases, and carbapenemases.

INTRODUCTION (cont'd)

- Enterobacteriaceae.
- morbidity and mortality.
- increasingly limited.
- In Phase 3 trials
- Ceftolozane/tazobactam demonstrated superior clinical efficacy to high-dose levofloxacin for the treatment of patients with complicated lower urinary tract infection/pyelonephritis.
- Ceftolozane/tazobactam plus metronidazole was as efficacious as meropenem in patients with complicated intra-abdominal infection.
- A Phase 3 trial comparing ceftolozane/tazobactam with meropenem in ventilated nosocomial pneumonia is ongoing.
- In the present study, we evaluated the potency of ceftolozane/tazobactam and comparator drugs tested against a large, contemporary (2013) collection of clinically derived *P. aeruginosa* obtained from patients in United States (USA) hospitals.

MATERIALS AND METHODS

Sampling Sites and Organisms

- A total of 1081 *P. aeruginosa* isolates were consecutively collected in 2013 from 30 medical centers located across all 9 USA census regions by the Program to Assess Ceftolozane/Tazobactam Susceptibility (PACTS).
- All organisms were isolated from documented infections and only 1 strain per patientinfection episode was included in the surveillance collection.
- The isolates were derived primarily from: bloodstream infections; skin and skin-structure infections; pneumonia aspirates; and urinary tract infections; and intra-abdominal infections from hospitalized patients according to a common surveillance design.

Antimicrobial Susceptibility Testing

- Minimum inhibitory concentration (MIC) values were determined using the reference Clinical and Laboratory Standards Institute (CLSI) broth microdilution method (M07-A9). Quality control ranges and interpretive criteria for comparator compounds used the CLSI M100-S24 guidelines. The ESBL phenotype was defined as a MIC of $\geq 2 \mu g/mL$ for ceftazidime or ceftriaxone or aztreonam.
- **To better evaluate the activities of ceftolozane/tazobactam against** *P. aeruginosa*, strains were stratified by susceptibility pattern to ceftazidime and meropenem. Multidrugresistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) bacteria were classified as such per recently recommended guidelines by Magiorakos et al (2012), using the following antimicrobial class representative agents and CLSI susceptibility MIC breakpoints: ceftazidime (\geq 16 µg/mL), meropenem (\geq 4 µg/mL), piperacillin/tazobactam $(\geq 32/4 \ \mu g/mL)$, levofloxacin $(\geq 4 \ \mu g/mL)$, gentamicin $(\geq 8 \ \mu g/mL)$, and colistin $(\geq 4 \ \mu g/mL)$.
- Classifications were based on the following recommended parameters: MDR = nonsusceptible to representative agent in ≥ 3 antimicrobial classes; XDR = nonsusceptible to representative agent in all but ≤ 2 antimicrobial classes; PDR = nonsusceptible to all antimicrobial classes.

D.J. Farrell, H.S. Sader, M. Castanheira, R.N. Jones

JMI Laboratories, North Liberty, IA, USA

Tazobactam, a penicillanic acid-sulfone, is a well-established β-lactamase inhibitor that extends the spectrum of β -lactam agents. Ceftolozane/tazobactam is a novel antibacterial with activity against P. aeruginosa, including drug-resistant strains, and other common Gram-negative pathogens, including most ESBL-producing

• Over the past decade, nosocomial infections caused by *P. aeruginosa* and Enterobacteriaceae in intensive care units worldwide have been increasing in prevalence, along with antimicrobial resistance; and there have been associated increases in

Empirical and targeted therapies to treat infections with these organisms are becoming

	No. of Isolates (Cumulative %) Inhibited at Ceftolozane/Tazobactam MIC (µg/mL)													
Organism (n)	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	>32	MIC ₅₀	MIC
All P. aeruginosa (1081)	2 (0.2)	1 (0.3)	6 (0.8)	43 (4.8)	593 (59.7)	263 (84.0)	94 (92.7)	40 (96.4)	20 (98.2)	6 (98.8)	1 (98.9)	12 (100.0)	0.5	2
MDR (157)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	13 (8.3)	40 (33.8)	49 (65.0)	26 (81.5)	11 (88.5)	5 (91.7)	1 (92.4)	12 (100.0)	2	16
XDR (84)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	2 (2.4)	11 (15.5)	28 (48.8)	16 (67.9)	11 (81.0)	5 (86.9)	0 (86.9)	11 (100.0)	4	>32
CAZ-S (916)	2 (0.2)	1 (0.3)	6 (1.0)	43 (5.7)	586 (69.7)	240 (95.9)	32 (99.3)	5 (99.9)	1 (100.0)				0.5	1
CAZ-NS (165)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	7 (4.2)	23 (18.2)	62 (55.8)	35 (77.0)	19 (88.5)	6 (92.1)	1 (92.7)	12 (100.0)	2	16
MEM-S (865)	2 (0.2)	1 (0.3)	6 (1.0)	43 (6.0)	538 (68.2)	192 (90.4)	56 (96.9)	14 (98.5)	9 (99.5)	2 (99.8)	1 (99.9)	1 (100.0)	0.5	1
MEM-NS (208)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	49 (23.6)	69 (56.7)	38 (75.0)	26 (87.5)	11 (92.8)	4 (94.7)	0 (94.7)	11 (100.0)	1	8
CAZ- and MEM-NS (85)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	2 (2.4)	6 (9.4)	27 (41.2)	24 (69.4)	11 (82.4)	4 (87.1)	0 (87.1)	11 (100.0)	4	>32
P/T-S (848)	2 (0.2)	1 (0.4)	6 (1.1)	43 (6.1)	574 (73.8)	193 (96.6)	21 (99.1)	4 (99.5)	1 (99.7)	0 (99.7)	1 (99.8)	2 (100.0)	0.5	1
P/T-NS (232)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	19 (8.2)	69 (37.9)	73 (69.4)	36 (84.9)	19 (93.1)	6 (95.7)	0 (95.7)	10 (100.0)	2	8
CAZ-, MEM-, and P/T-NS (82)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (1.2)	6 (8.5)	27 (41.5)	24 (70.7)	11 (84.2)	4 (89.0)	0 (89.0)	9 (100.0)	4	>32
Cefepime-S (902)	2 (0.2)	1 (0.3)	6 (1.0)	43 (5.8)	587 (70.8)	229 (96.2)	29 (99.5)	2 (99.7)	2 (99.9)	0 (99.9)	1 (100.0)	-	0.5	1
Cefepime-NS (178)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	5 (2.8)	34 (21.9)	65 (58.4)	38 (79.8)	18 (89.9)	6 (93.3)	0 (93.3)	12 (100.0)	2	16
Levofloxacin-S (814)	2 (0.3)	1 (0.4)	5 (1.0)	39 (5.8)	527 (70.5)	163 (90.5)	42 (95.7)	21 (98.3)	11 (99.6)	2 (99.9)	0 (99.9)	1 (100.0)	0.5	1
Levofloxacin-NS (267)	0 (0.0)	0 (0.0)	1 (0.4)	4 (1.9)	66 (26.6)	100 (64.1)	52 (83.5)	19 (90.6)	9 (94.0)	4 (95.5)	1 (95.9)	11 (100.0)	1	4
Gentamicin-S (960)	2 (0.2)	1 (0.3)	6 (0.9)	41 (5.2)	572 (64.8)	226 (88.3)	64 (95.0)	29 (98.0)	13 (99.4)	4 (99.8)	0 (99.8)	2 (100.0)	0.5	2
Gentamicin-NS (120)	0 (0.0)	0 (0.0)	0 (0.0)	2 (1.7)	21 (19.2)	36 (49.2)	30 (74.2)	11 (83.3)	7 (89.2)	2 (90.8)	1 (91.7)	10 (100.0)	2	16

AZ-NS, ceftazidime-nonsusceptible; CAZ-S, ceftazidime-susceptible; MEM, meropenem; P/T, piperacillin/tazobactar

- Ceftolozane/tazobactam was the most potent agent (MIC_{50/90}, 0.5/2 μg/mL) test 1081 *P. aeruginosa*, inhibiting 98.2% of isolates at a MIC of $\leq 8 \mu g/mL$ (**Table 1**).
- Ceftolozane/tazobactam was 4-fold more active than ceftazidime (MIC_{50/00}, 2/32) 84.7% susceptible) and cefepime (MIC_{50/90}, 2/16 μ g/mL; 83.5% susceptible), 16active than piperacillin/tazobactam (MIC_{50/90}, 8/>64 μ g/mL; 78.5% susceptible), slightly more potent than meropenem (MIC_{50/90}, 0.5/8 μ g/mL; 80.6% susceptibl doripenem (MIC_{50/90}, 0.5/4 μ g/mL; 84.2% susceptible; **Table 2**).
- After colistin (MIC_{50/00}, 1/2 μg/mL, 99.9% susceptible), ceftolozane/tazobactam most active agent (MIC_{50/90}, 2/16 μ g/mL; 88.5% inhibited at MIC \leq 8 μ g/mL) test 157 MDR *P. aeruginosa*, with resistance for all other agents ranging from 10.2% amikacin to 70.1% for levofloxacin (**Table 2**).
- Similarly, against 84 XDR strains, ceftolozane/tazobactam retained good activity $4/>32 \ \mu g/mL$; 81.0% inhibited at MIC $\leq 8 \ \mu g/mL$) while resistance to other agent from 15.5% for amikacin to 82.1% for levofloxacin (Table 2). All XDR strains remains susceptible to colistin (100.0% susceptible), while in contrast, high levels of resist to ceftazidime (71.4% resistant), doripenem (57.1% resistant), and meropene (78.6% resistant) were observed (**Table 2**).
- No PDR *P. aeruginosa* strains were detected.
- Ceftolozane/tazobactam had good activity against many ceftazidime-nonsuscer (MIC_{50/00}, 2/16 µg/mL; 88.5% inhibited at MIC \leq 8 µg/mL), meropenem-nonsusce (MIC_{50/90}, 1/8 μg/mL; 92.8% inhibited at MIC ≤8 μg/mL), piperacillin/tazobactam nonsusceptible (MIC_{50/90}, 2/8 μ g/mL, 93.1% inhibited at MIC \leq 8 μ g/mL), cefepin nonsusceptible (MIC_{50/90}, 2/16 μ g/mL; 89.9% inhibited at MIC \leq 8 μ g/mL), levofle nonsusceptible (MIC_{50/90}, 1/4 μ g/mL; 94.0% inhibited at MIC ≤8 μ g/mL), and gentamicin-nonsusceptible (MIC_{50/90}, 2/16 μ g/mL; 89.2% inhibited at MIC \leq 8 μ g/ isolates (**Table 1**).
- Ceftolozane/tazobactam also had good activity against many isolates with combined and the second se ceftazidime- and meropenem-nonsusceptibility (MIC_{50/90}, 4/>32 μ g/mL; 82.4% i MIC $\leq 8 \mu g/mL$) and combined ceftazidime- and meropenem- and piperacillin/ta nonsusceptibility (MIC_{50/90}, 4/>32 μ g/mL; 84.2% inhibited at MIC ≤8 μ g/mL; **Tabl**

RESULTS

Table 2. Antimicrobial Activity of Ceftolozane/Tazobactam and Various Comparator Agents Against P aeruginosa Collected in the USA During 2013

	Agents Against <i>P. aeruginosa</i> Collected in the USA During 2013							
sted against	Antimicrobial Agent/Organism (No. Tested)	MIC ₅₀	MIC ₉₀	%Susceptible ^a	%Resistant ^a			
	All isolates (1081)							
	Ceftolozane/tazobactam	0.5	2	_b	-			
2 μg/mL;	Ceftazidime	2	32	84.7	11.4			
-fold more	Cefepime	2	16	83.5	7.2			
, and	Meropenem	0.5	8	80.6	13.0			
le) and	Doripenem	0.5	4	84.2	7.1			
-,	Piperacillin/tazobactam	8	>64	78.5	11.9			
	Aztreonam	4	>16	71.5	18.4			
was the	Ciprofloxacin	0.12	>4	76.6	17.5			
ted against	Levofloxacin	0.5	>4	75.3	18.7			
% for	Amikacin	2	8	96.8	2.1			
	Gentamicin	≤1	8	88.9	8.4			
	Colistin	1	2	99.9	0.1			
y (MIC _{50/90} ,	MDR (157)							
nts ranged	Ceftolozane/tazobactam	2	16	-	-			
nained	Ceftazidime	32	>32	31.9	33.8			
istance	Cefepime	16	>16	28.7	36.9			
	Meropenem	8	>8	17.8	61.8			
em	Doripenem	4	>8	28.9	41.7			
	Piperacillin/tazobactam	>64	>64	12.7	52.9			
	Aztreonam	>16	>16	14.0	66.9			
	Ciprofloxacin	>4	>4	22.9	63.1			
otible	Levofloxacin	>4	>4	16.6	70.1			
eptible	Amikacin	8	>32	84.7	10.2			
n-	Gentamicin	4	>8	51.0	41.4			
ne-	Colistin	1	2	99.4	0.6			
oxacin-	XDR (84)							
oxaciii	Ceftolozane/tazobactam	4	>32	-	-			
	Ceftazidime	32	>32	14.3	71.4			
g/mL	Cefepime	>16	>16	11.9	56.0			
	Meropenem	8	>8	7.1	78.6			
bined	Doripenem	8	>8	15.5	57.1			
nhibited at	Piperacillin/tazobactam	>64	>64	2.4	73.8			
	Aztreonam	>16	>16	1.2	77.4			
azobactam-	Ciprofloxacin	>4	>4	9.5	76.2			
ole 1).	Levofloxacin	>4	>4	4.8	82.1			
	Amikacin	8	>32	77.4	15.5			
	Gentamicin	>8	>8	39.3	52.4			
	Colistin	1	2	100.0	0.0			

- and meropenem-nonsusceptible strains.
- tazobactam

- Antimicrob Agents Chemother. 2013;57:1577-1582.
- Chemother. 2013;57:6305-6310.

David J. Farrell JMI Laboratories 345 Beaver Kreek Ctr, Ste A North Liberty, IA, USA Tel: 319-665-3370 E-mail: david-farrell@jmilabs.com

CONCLUSIONS

In 2013, ceftolozane/tazobactam demonstrated continued high potency against contemporary *P. aeruginosa* isolates consecutively collected from 30 medical centers located across all 9 USA census regions.

Ceftolozane/tazobactam retained clear activity against many MDR, XDR, ceftazidime-nonsusceptible, meropenem-nonsusceptible, piperacillin/ tazobactam-nonsusceptible, and combined ceftazidime-, piperacillin/tazobactam-,

• These in vitro data support the further clinical development of ceftolozane/

ACKNOWLEDGMENTS

Editorial and layout support for this poster was provided by PAREXEL and funded by Cubist.

REFERENCES

Clinical and Laboratory Standards Institute. 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard: 9th ed. CLSI document M7-A9. Wayne, PA: CLSI

Clinical and Laboratory Standards Institute. 2014. Performance standards for antimicrobial susceptibility testing: 24th informational supplement. CLSI document M100-S24. Wayne, PA: CLSI.

Craig WA, Andes DR. In-vivo activity of ceftolozane, a new cephalosporin, with and without tazobactam against Pseudomonas *aeruginosa* and enterobacteriaceae, including strains with extended-spectrum β-lactamases, in the thighs of neutropenic mice.

Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268-281.

Farrell DJ, Flamm RK, Sader HS, Jones RN. Antimicrobial activity of ceftolozane-tazobactam tested against Enterobacteriaceae and *Pseudomonas aeruginosa* with various resistance patterns isolated in U.S. Hospitals (2011-2012). Antimicrob Agents

VanScoy B, Mendes RE, Castanheira M, et al. Relationship between ceftolozane/tazobactam exposure and drug-resistance amplification in a hollow-fiber infection model. *Antimicrob Agents Chemother*. 2013;57:4134-4138.

VanScoy B, Mendes RE, Nicasio AM, et al. Pharmacokinetics-pharmacodynamics of tazobactam in combination with ceftolozane in an in vitro infection model. Antimicrob. Agents Chemother. 2013;57:2809-2814.