Characterization of *Enterobacter cloacae* and Citrobacter freundii species complex isolates with decreased susceptibility to cephalosporins from United States hospitals and activity of aztreonam-avibactam and comparator agents (2019–2023)

Helio S. Sader, Timothy B. Doyle, John H. Kimbrough, Cory Hubler, Mariana Castanheira Element Iowa City (JMI Laboratories), North Liberty, IA, USA

CONCLUSIONS

ATM-AVI was highly active against CFC and ECLC isolates with decreased susceptibility to 3rd and/or 4th generation cephalosporins and retained complete activity against carbapenem-resistant isolates, including MBL producers.

The activities of CAZ-AVI, MEM-VAB, and cefiderocol were compromised against carbapenem-resistant isolates due to the high frequency of NDM producers.

Our results indicated that ATM-AVI may represent a valuable option to treat infections caused by multidrug-resistant CFC and ECLC.

Contact Information

Helio S. Sader, MD, PhD, FIDSA Element Iowa City (JMI Laboratories) 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 USA Phone: (319) 665-3370 Fax: (319) 665-3371 Email: helio.sader@element.com

Scan QR code or utilize the following link to download an electronic version of this presentation and other AbbVie IDWeek 2024 scientific presentations:

https://www.jmilabs.com/data/posters /IDWeek2024_24-ALG-02_A2_ATM-AV _ECLC_CFC.pdf

To submit a medical question, please visit www.abbviemedinfo.com

SCAN ME

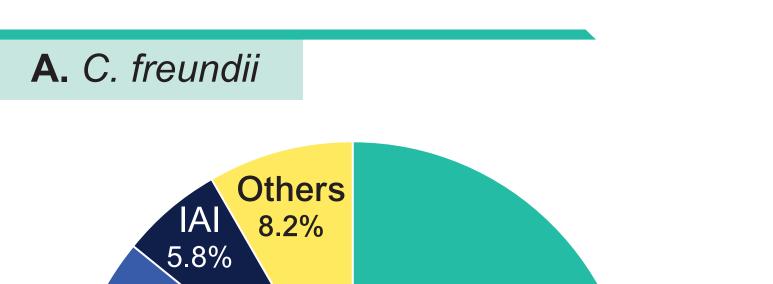
Acknowledgments The authors thank all the participant centers for their work in providing isolates.

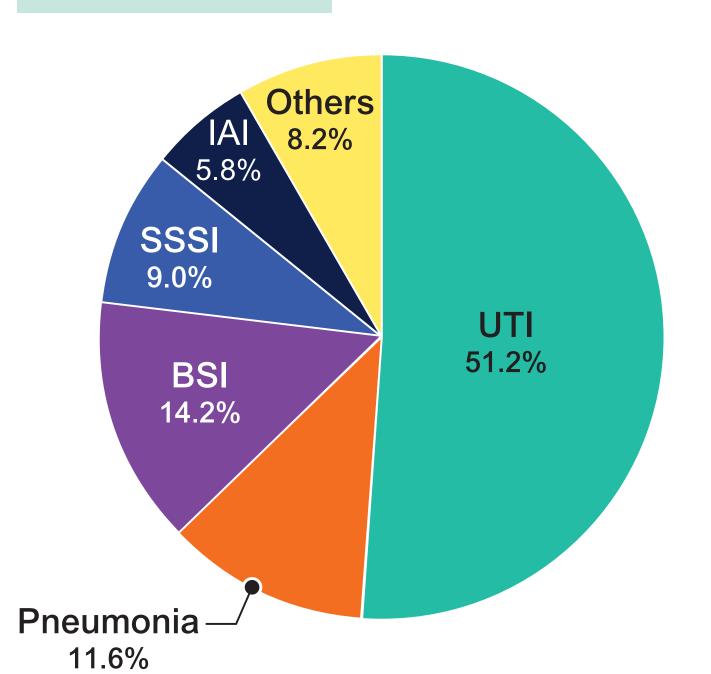
Funding

This study was supported by AbbVie. HS Sader, TB Doyle, JH Kimbrough, C Hubler, and M Castanheira are employees of Element Iowa City (JMI Laboratories), which was paid consultant to AbbVie in connection with the development of this poster.

References

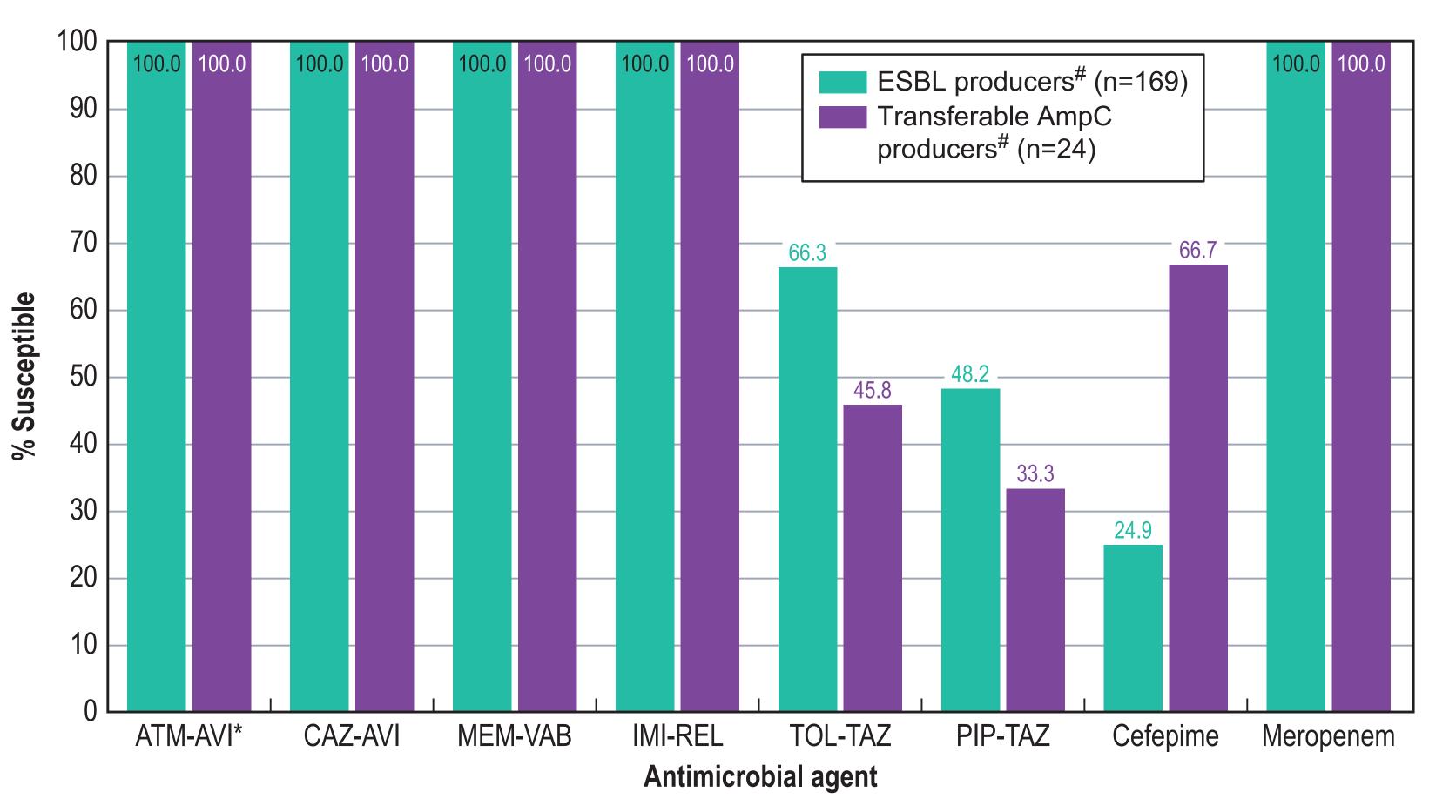
- 1. CLSI. 2024. M100Ed34. Performance standards for antimicrobial susceptibility testing: 34th informational supplement. Clinical and Laboratory Standards Institute, Wayne, PA
- 2. Cornely OA, Cisneros JM, Torre-Cisneros J, et al. (2020). Pharmacokinetics and safety of aztreonam/avibactam for the treatment of complicated intra-abdominal infections in hospitalized adults: results from the REJUVENATE study. J Antimicrob Chemother. 75:618-627.
- 3. Sader HS. Mendes RE. Dovle TB. Davis AP. Castanheira M (2021). Characterization of Enterobacter cloacae and *Citrobacter freundii* species complex isolates with decreased susceptibility to cephalosporins from United States hospitals and activity of ceftazidime/avibactam and comparator agents. JAC Antimicrob Resist. 3(3):dlab136.
- 4. Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ (2023). Infectious Diseases Society of America 2023 guidance on the treatment of antimicrobial resistant Gram-negative infections. Clin Infect Dis. ciad428.


abbvie

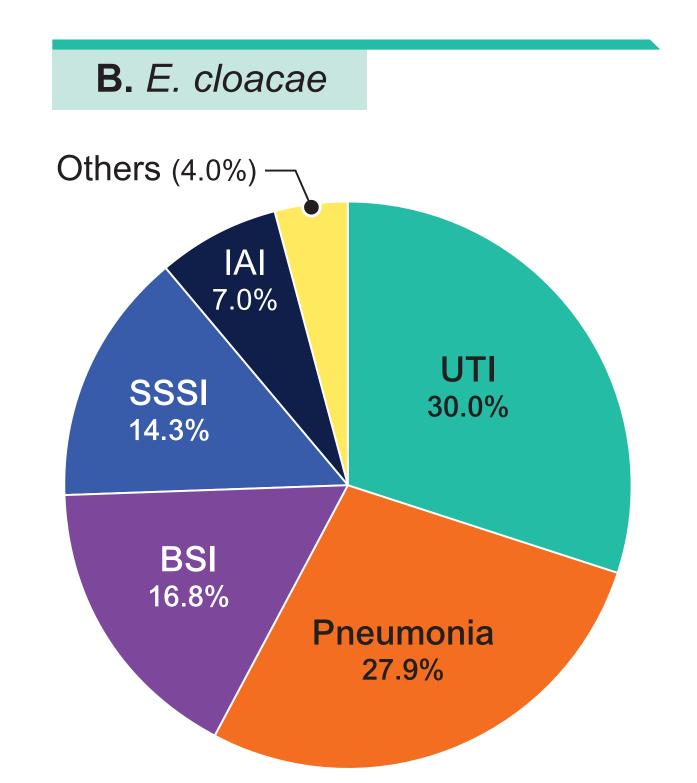

INTRODUCTION

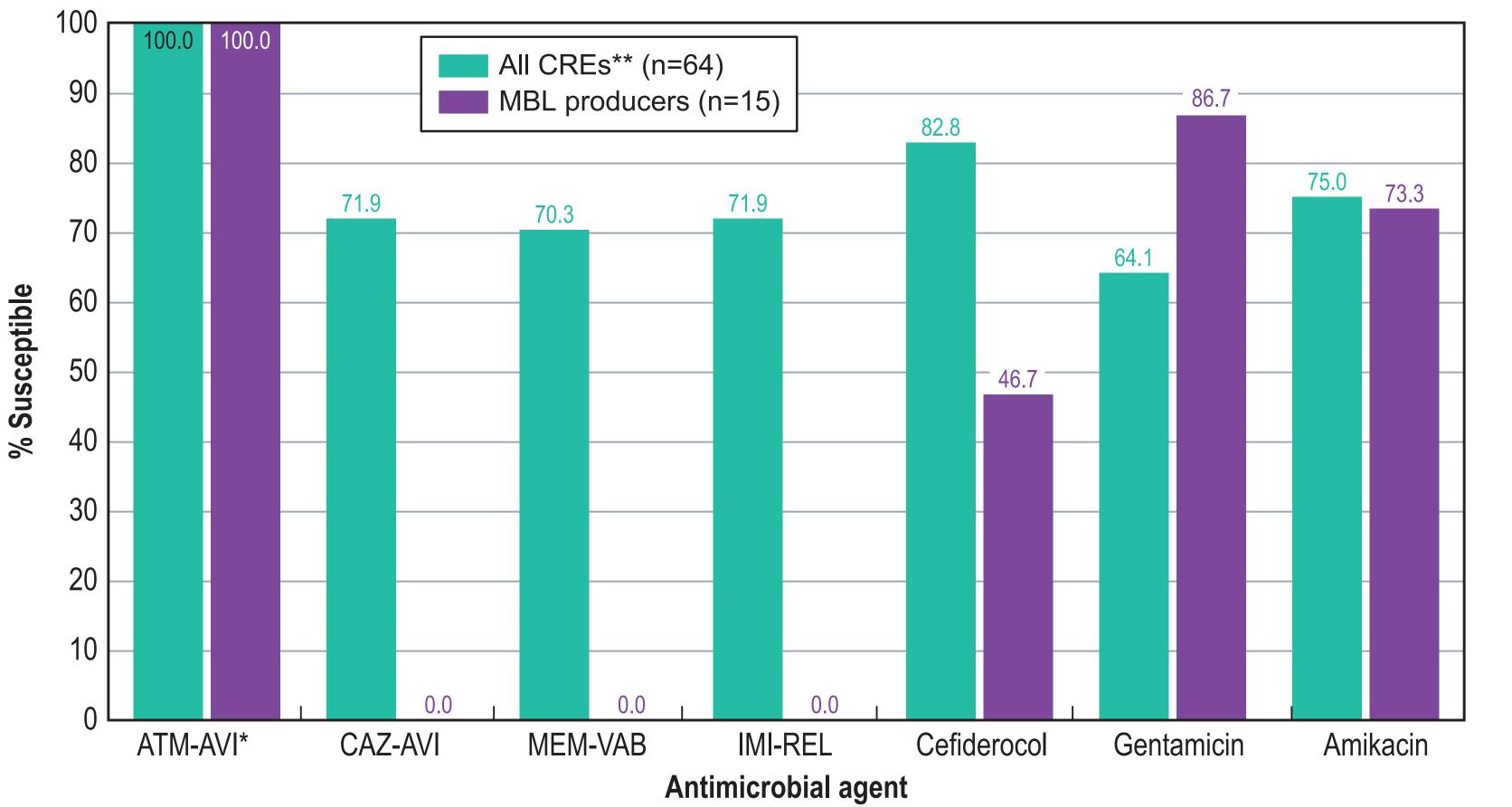
- Aztreonam-avibactam (ATM-AVI) is under development in the United States (US) to treat infections caused by Gram-negative bacteria, including metalloβ-lactamase (MBL) producers.
- Phase 3 clinical trials REVISIT (NCT03329092) and ASSEMBLE (NCT03580044) evaluated the efficacy, safety, and tolerability of ATM-AVI in treating serious bacterial infections due to Gram-negative bacteria, including MBL-producing multidrug-resistant pathogens for which there are limited or no treatment options.
- Moreover, ATM-AVI has been recently approved by the European Medicine Agency (Emblaveo®) to treat adults who have complicated intra-abdominal infections (IAI), hospital-acquired pneumonia (including ventilator-associated pneumonia), and complicated urinary tract infections (UTI; including pyelonephritis), as well as infections caused by aerobic Gram-negative organisms in patients who have limited treatment options.
- We evaluated the in vitro activities of ATM-AVI and comparators against cephalosporin non-susceptible (S) E. cloacae (ECLC) and C. freundii species complex (CFC) from patients hospitalized in US medical centers.

METHODS


- A total of 43,235 Enterobacterales (1/patient) were collected via the INFORM Surveillance Program from 80 US medical centers in 2019–2023.
- Among those, 5,106 (11.8%) were ECLC (n=3,732) or CFC (n=1,374).
- Susceptibility testing was performed by CLSI broth microdilution.
- We evaluated the antimicrobial susceptibility and β -lactamase production of ECLC and CFC isolates that were resistant to ceftazidime (MIC \geq 16 mg/L) or non-S to cefepime (MIC \geq 2 mg/L).
- The collection includes 1,065 ECLC and 379 CFC.
- ATM-AVI was tested with avibactam at fixed 4 mg/L and a pharmacodynamic/pharmacokinetic susceptible breakpoint of ≤8 mg/L was applied for comparison.
- Comparators included ceftazidime-avibactam (CAZ-AVI), meropenem-vaborbactam (MEM-VAB), and cefiderocol, among others.
- Cefiderocol was only tested against carbapenem-resistant Enterobacterales (CRE) isolates in iron-depleted media.
- All isolates (n=1,444) were characterized by whole genome sequencing.

Abbreviations: UTI, urinary tract infection; BSI, bloodstream infection; SSSI, skin and skin structure infection; IAI, intra-abdominal infection.


Figure 2. Susceptibility of ESBL and transferable AmpC producers


Abbreviations: ATM-AVI, aztreonam-avibactam; CAZ-AVI, ceftazidime-avibactam; MEM-VAB, meropenem-vaborbactam; IMI-REL, imipenem-relebactam; TOL-TAZ, ceftolozane-tazobactam; PIP-TAZ, piperacillin-tazobactam. * % inhibited at ≤8 mg/L

Excluding MBL co-producers

Figure 1. Distribution of isolates by infection sources

Figure 3. Susceptibility of carbapenem-resistant isolates (CRE) and MBL producers

Abbreviations: ATM-AVI, aztreonam-avibactam; CAZ-AVI, ceftazidime-avibactam; MEM-VAB, meropenem-vaborbactam; IMI-REL, imipenem-relebactam;

* % inhibited at ≤8 mg/L ** Includes MBL producers

TOL-TAZ, ceftolozane-tazobactam; PIP-TAZ, piperacillin-tazobactam.

- RESULTS
- including MBL (all NDM) producers (Table 1 and Figures 2 and 3).
- (0.0%S; Figures 2 and 3).
- Figure 4).
- Figure 4).

Table 1. Susceptibility of *C. freundii* and *E. cloacae* isolates with decreased susceptibility to 3rd and/or 4th generation cephalosporins

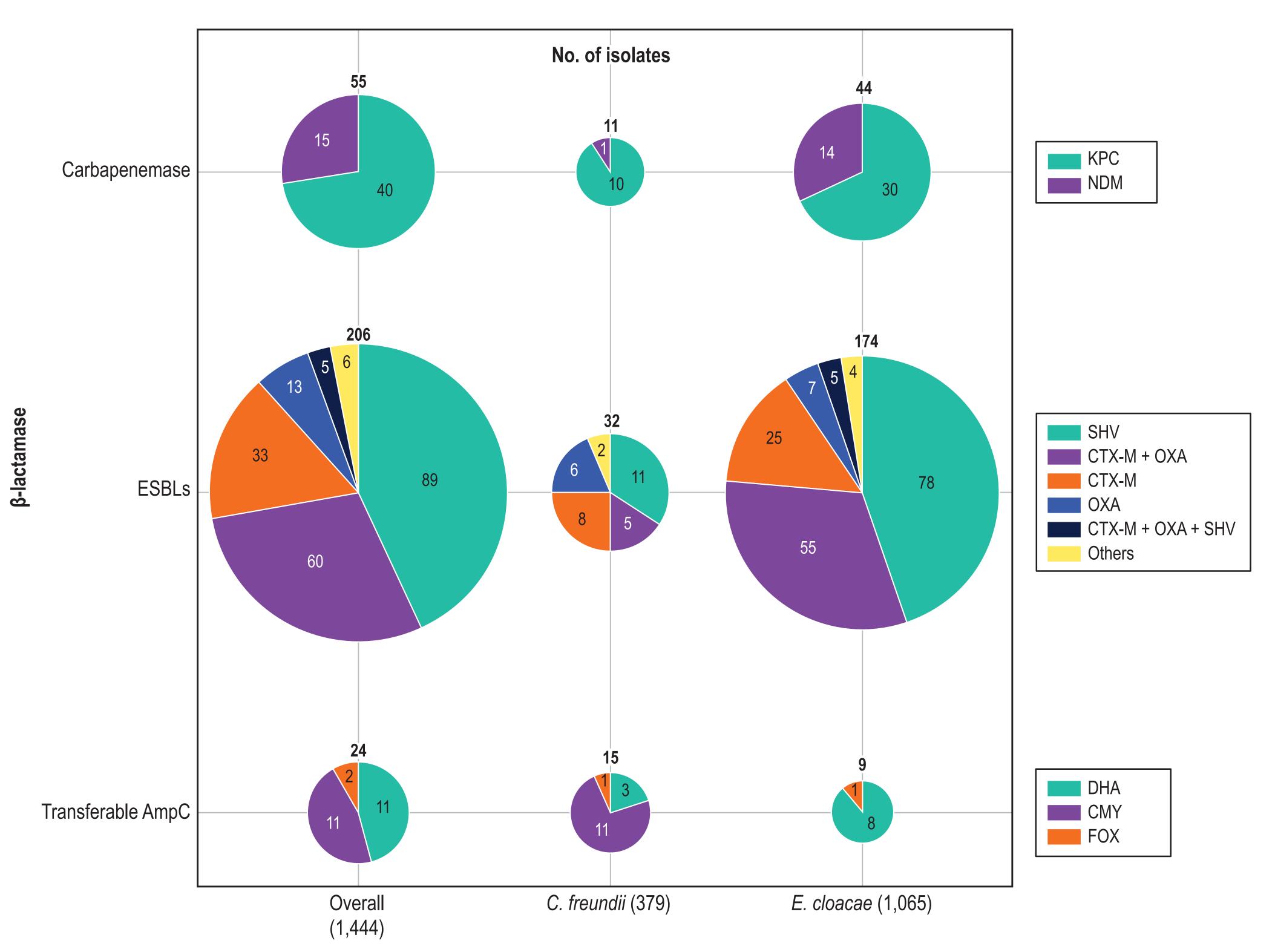
Antimicrobial	All (1,444)		<i>C. freundii</i> (379)		<i>E. cloacae</i> (1,065)	
	MIC _{50/90}	%S a	MIC _{50/90}	%S a	MIC _{50/90}	%S a
Aztreonam-avibactam	0.25/1	99.9 ^b	0.25/0.5	100.0 ^b	0.5/1	99.9 ^t
Ceftazidime-avibactam	0.5/1	98.2	0.5/1	99.5	0.5/1	97.7
Meropenem-vaborbactam	0.03/0.06	98.5	0.03/0.03	99.7	0.03/0.06	98.2
Ceftolozane-tazobactam	8/>16	20.7	16/>16	17.4	8/>16	21.9
Piperacillin-tazobactam	128/>128	9.2	128/>128	9.2	64/>128	9.1
Aztreonam	>16/>16	2.6	>16/>16	2.9	>16/>16	2.5
Ceftriaxone	>8/>8	0.3	>8/>8	0.3	>8/>8	0.4
Ceftazidime	>32/>32	1.3	>32/>32	1.8	>32/>32	1.1
Cefepime	2/32	65.0	1/8	75.2	2/32	61.3
Meropenem	0.06/0.25	94.7	0.06/0.12	96.3	0.06/0.25	94.2
Levofloxacin	0.06/2	81.0	0.12/2	76.3	0.06/2	82.7
Gentamicin	0.25/4	89.3	0.5/8	88.9	0.25/4	89.5
Amikacin	1/2	96.1	2/4	93.9	1/2	96.8

^a % susceptible per CLSI criteria ^b % inhibited at ≤8 mg/L.

• Isolates were mainly from UTI, pneumonia, and bloodstream infection (BSI; Figure 1).

• ATM-AVI inhibited 99.9% of isolates at ≤8 mg/L and showed complete activity (100.0% inhibited at ≤8 mg/L) against ESBL producers and CRE isolates,

• CAZ-AVI and MEM-VAB were highly active against ESBL producers but showed limited activity against CRE (70.3–71.9%S), especially MBL producers


• Cefiderocol was active against 82.8% of CREs but only 46.7% of MBL (all NDM) producers (Figure 3). • A carbapenemase was identified in 55 of 64 (85.9%) CRE isolates, including KPC type (40 isolates; 62.5% of CREs) and NDM-1 (15; 23.4% of CREs;

• The most common ESBLs were CTX-M type, SHV type, and OXA type (Figure 4).

• Two or more ESBLs were identified in 70 isolates (34.0% of ESBL producers), mainly OXA-1/30 plus a CTX-M (65 isolates; 31.6% of ESBL producers;

• A transferable AmpC was identified in 27 isolates; 3 of them co-produced a carbapenemase (Figures 3 and 4).

